

CENTRE: SENSER

TOMAS BATA UNIVERSITY IN ZLIN

Univerzita Tomáše Bati ve Zlíně Centrum polymerních systémů

6 FACULTIES

+

UNIVERSITY INSTITUTE

278 DEGREE PROGRAMMES

69 IN ENGLISH

8,933 STUDENTS 974
EMPLOYEES

1,129
INTERNATIONAL
STUDENTS

Centre of

Polymer

Systems

Faculty Faculty Faculty of Logistics Faculty University Faculty Faculty of Applied of Management of Multimedia and Crisis of Humanities of Technnology Institute **Informatics** and Economics Communications Management

Technology

Transfer Centre

Footwear

Research

Centre

Science and

Technology

Park

CENTRE OF POLYMER SYSTEMS (CPS)

WHO WE ARE

Research centre focused on R&D in the field of polymer science and further chemical and technological areas.

MISSION

Knowledge for sustainable development in practise.

OUR GOALS

- Excellence in polymer science and other relevant fields
- Following the strategy of the TBU Entrepreneurial university
- National and international prestige development
- High quality education processes
- Sustainable development
- Cooperation with industry.

MOBILITY CAREER

FLEXIBILITY

INNOVATION

PROFESSIONALISM

TRANSPARENCY

EXCELLENCE

	2021	2022	2023
Total number of employees	138	137	133
Total number of FTE's	95.8 (0.69 per employee)	93.8 (0.68 per employee)	90.75 (0.68 per employee)

Polymers Processing

Biomaterials

Rubber Technologies

Nanomaterials and Advanced Technologies

Environmental Technologies

Energy and Composite Materials and Devices

EXPERTISE - COOPERATION

Plastics and rubber processing:

- extrusion, injection, blow molding
- compounding
- spunbond, meltblown
- electrospinning
- 3D printing

Microbiological analysis:

- antibacterial activity of plastics / textiles / cosmetics
- determination of bacterial purity
- antiviral tests bacteriophage simulation
- bacterial filtration efficiency (BFE)
- biodegradation of materials

Biocompatibility testing

- cytotoxicity tests
- cell adhesion tests
- cell proliferation tests
- scaffold growth tests
- transdermal absorption tests
- phototoxicity tests

Materials Life Cycle Analysis (LCA)

Chemical analysis of materials:

- elemental analysis (EDXRF, AAS, TOC,)
- a wide range of chromatographic techniques (např. GC/QTOF, LC/QTOF, GPC atd.)
- spectroscopic analysis (FTIR, Raman spectroscopy)

Physical analysis of materials:

- mechanical and viscoelastic properties
- testing of rubber compounds
- thermal properties (DSC, TGA / MS)
- thermal insulation properties
- antistatic and dissipative characteristics
- surface analysis (AFM, porosimetry)
- barrier properties
- determination of filtration efficiency of materials (TSI filter tester)
- determination of particle size
- comprehensive rheological analysis

Processing technologist*

Chemical technician analyst

Processing of rubber compounds*

The courses are accredited by the Ministry of Education, Youth and Sports...

*Two courses are also authorized by Ministry of Industry and Trade.

CENTRE OF POLYMER SYSTEMS

expertise in sustainable materials and technologies,

advanced instrumentation,

personal capacities competencies,

project implementation and dissemination experience,

internationalization activities, exchange programmes,

research of advanced materials for

- space applications,

- electromobility and energy storage.

www.cps.utb.cz www.utb.cz

NATIONAL CENTRE OF COMPETENCE

National Centre of Competence - Polymer Materials and Technologies for the 21st Century

Project agenda

Science and research agendas include advanced materials, environmental and process engineering and consumption in circular environments.

Project Duration: 2023 - 2028

Amount of aid from national funds CZK 313,222 thousand

Coordinator: Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín

Partners:

Univerzita Palackého v Olomouci

+ industrial partners,private R&D institutions,clusters and professional associations

NATIONAL CENTRE OF COMPETENCE

National Centre of Competence - Polymer Materials and Technologies for the 21st Century

OBJECTIVES

- waste management, including positive impacts on national climate and other environmental goals
- security of supply of materials and reducing dependence on sources of materials imported from outside the EU
- increasing the competitiveness of businesses
- reduction of fossil fuel consumption.

FOCUS

- Advanced materials
- Environmental Process Engineering
- Consumption in the circular economy
- Communication, dissemination, creativity

NATIONAL CENTRE OF COMPETENCE

National Centre of Competence - Polymer Materials and Technologies for the 21st Century

IMPLEMENTED PROJECTS

- Polymer marking system for digitized waste sorting systém
- Thermosetting Compound with the Absence of Evaporation of Additives during the Subsequent Surface Treatment Process
- Removing additives from plastics using solvents
- Triboelectric sorting of waste plastic granulate/grit
- Thermochemical processing of waste plastics using pyrolysis, catalytic and purification processes
- Functional polyurethane polymers
- Sludge processing technology from plastic recycling
- Nanofibrous polymer materials with antimicrobial protection
- Biopolymers for agrochemical applications
- Evaluation of polymeric materials by the fractionation method
- Utilisation of 2nd Generation Biopolymer Feedstock Sources for Value-added Products
- Recycling of waste polymers from car batteries using mechanical and chemical recycling
- Plastics with increased thermal conductivity

www.polyenvi21.cz

INTERNATIONAL COOPERATIOON WITH CLUSTERS

The Plan-C project boosts the **transformation of the plastics value chain** in the Danube countries towards circularity through the transnational cooperation of plastics processors/producers and the machine industry. Based on transnational technology transfer and a design thinking process, both actor groups jointly develop prototype solutions of plastics products + machine concepts designed for circularity to demonstrate the benefits of recycling, reuse, remanufacturing through innovative business cases.

https://interreg-danube.eu/projects/Plan-C

THANK YOU FOR ATTENTION

- Vladimír Sedlařík, director
- sedlarik@utb.cz
- www.cps.utb.cz

